Estimation of Extreme Quantiles for Functions of Dependent Random Variables
نویسندگان
چکیده
We propose a new method for estimating the extreme quantiles for a function of several dependent random variables. In contrast to the conventional approach based on extreme value theory, we do not impose the condition that the tail of the underlying distribution admits an approximate parametric form, and, furthermore, our estimation makes use of the full observed data. The proposed method is semiparametric as no parametric forms are assumed on the marginal distributions. But we select appropriate bivariate copulas to model the joint dependence structure by taking the advantage of the recent development in constructing large dimensional vine copulas. Consequently a sample quantile resulted from a large bootstrap sample drawn from the fitted joint distribution is taken as the estimator for the extreme quantile. This estimator is proved to be consistent. The simulation results lend further support to the reliable and robust performance of the proposed method. The method is further illustrated by an real world example in backtesting financial risk models.
منابع مشابه
An Integrated Functional Weissman Es- Timator for Conditional Extreme Quan- Tiles
• It is well-known that estimating extreme quantiles, namely, quantiles lying beyond the range of the available data, is a nontrivial problem that involves the analysis of tail behavior through the estimation of the extreme-value index. For heavy-tailed distributions, on which this paper focuses, the extreme-value index is often called the tail index and extreme quantile estimation typically in...
متن کاملWavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کاملDistribution Free Confidence Intervals for Quantiles Based on Extreme Order Statistics in a Multi-Sampling Plan
Extended Abstract. Let Xi1 ,..., Xini ,i=1,2,3,....,k be independent random samples from distribution $F^{alpha_i}$، i=1,...,k, where F is an absolutely continuous distribution function and $alpha_i>0$ Also, suppose that these samples are independent. Let Mi,ni and M'i,ni respectively, denote the maximum and minimum of the ith sa...
متن کاملEstimation of the Survival Function for Negatively Dependent Random Variables
Let be a stationary sequence of pair wise negative quadrant dependent random variables with survival function {,1}nXn?F(x)=P[X>x]. The empirical survival function ()nFx based on 12,,...,nXXX is proposed as an estimator for ()nFx. Strong consistency and point wise as well as uniform of ()nFx are discussed
متن کاملEstimation of E(Y) from a Population with Known Quantiles
‎In this paper‎, ‎we consider the problem of estimating E(Y) based on a simple random sample when at least one of the population quantiles is known‎. ‎We propose a stratified estimator of E(Y)‎, ‎and show that it is strongly consistent‎. ‎We then establish the asymptotic normality of the suggested estimator‎, ‎and prove that it ...
متن کامل